

STATIC & DYNAMIC BALANCING VALVE

Hydraulic balance and control Create ideal and comfortable indoor environment

NINGBO HOLY HVAC EQUIPMENT CO., LTD

It is a company with the hydraulic balancing technology as its core.

In September 2020, China set the goals of "carbon peaking" by 2030 and "carbon neutrality" by 2060. Under this background, Ningbo Holy HVAC Equipment Co., Ltd comes into being.

It has world–leading hydraulic balancing independent core technology. We focus on all kinds of dynamic balancing valves, static balancing valves, differential pressure valves, etc. Using our technology in air– conditioning system and heating system can improve system quality. We have provided OEM and ODM service to international and domestic famous enterprises for many years.

Our core goal is to provide comfortable, efficient, energy-saving and convenient products for airconditioning system, heating system and domestic water system etc. Our company is committed to promoting industry development and improving human life.

Catalogue

Hydraulic balancing system introduction · · · · · · · · · · · · · · · · · · ·
Static balancing valve · · · · · · · · · · · · · · · · · · ·
Dynamic balancing valve • • • • • • • • • • • • • • • • • • •
Insert of dynamic balancing valve · · · · · · · · · · · · · · · · · · ·
Dynamic flow balancing valve • • • • • • • • • • • • • • • • • • •
External set dynamic flow balancing valve • • • • • • • • • • • • • • • • • • •
Dynamic balancing electric two-way valve • • • • • • • • • • • • • • • • • • •
Dynamic balancing electric adjustable valve • • • • • • • • • • • • • • • • • • •
Dynamic balancing manifold • • • • • • • • • • • • • • • • • • •
Dynamic balancing radiator valve • • • • • • • • • • • • • • • • • • •
Dynamic balancing angle valve • • • • • • • • • • • • • • • • • • •
Project case · · · · · · · · · · · · · · · · · · ·

In air-conditioning and heating system, water is commonly used as a medium for distribution. So the hydraulic balance of water-cycling system decides the quality of the whole system: comfortable, energy-saving, stable.

The operation load of air conditioner and heater system is always a variate. The variation of temperature in nature, the quantity variation of end start and close, building interior doors and windows switch decides the system to be in the state of constant change. This variation will straightly cause the hydraulic imbalance of the whole system(also called hydraulic imbalance). It is difficult to balance the system flow correctly. "Correct" means that the flow through the end is just enough to meet the required heat and cold load. As the positions of each end are different, so the distance from the center of heat is different. If there is no hydraulic balance or imbalance, then the end near the center of heat will appear over–flow and over–high of cold /heat load. On the other hand, the distant end has too low flow and cold /heat load. This will result in cold/heat imbalance.Such system will obviously lead to greater energy consumption and can not guarantee the comfort required by the users. In conclusion, the importance of balance in the design and implementation of the system is undoubted.

The Purpose of Hydraulic Balance:

- Obtain the highest heat comfort, for example, in the case of sufficient external cold and heat sources, avoid local over heating or cooling caused by incorrect output flow to the end.
- Reduce the power consumption of circulating pump, the system cycles only according to the required flow.
- Guarantee the host machine runs at the designed temperature difference, increase the efficiency of the host machine, save energy consumption.
- Avoid abnormal operation of the system, such as the noise caused by over flow.
- Ensure that the system runs according to the correct flow.

HYDRAULIC IMBALANCE SOLUTION

Hydraulic imbalance also includes static hydraulic imbalance and dynamic hydraulic imbalance.

1、Static hydraulic imbalance

Because of design, construction, equipment, materials, the ratio of system pipeline characteristic resistance number is not consistent. Hydraulic imbalance caused by inconsistency between actual flow and designed flow.

The static hydraulic imbalance is inherent in the system, steady and fundamental;Adding balancing valve (static or dynamic balancing valve) in the pipeline can solve the imbalance problem. In the fixed flow system, the static balancing valve can solve this problem. But the static balancing elements only can limit the highest flow within a certain range, it can not make dynamic adjustment according to the flow and pressure change. So under such situation, the dynamic balancing valve is needed. It can balance the flow adaptively and automatically.

2、Dynamic hydraulic imbalance

Hydraulic imbalance due to end flow variation. That is, because of the users' need, the end of the water flow changes when a terminal control valve is closed or adjusted, resulting in changes in the resistance distribution of the system, leading to other end flow changes.

It is not inherent in the system. The imbalance occurred in the dynamic operation process has little impact on other ends, so the system stability is good. Otherwise, the hydraulic stability of the system is poor.

Static balancing valve can not solve this problem. Adding hydraulic dynamic balancing valve in the pipeline, when other end flow changes, dynamic balancing valve can play a "shield" role, so that its own control of the end flow does not change.

Active variable flow system of cold and heat sources. When the water supply from cold and hot sources is 100%, the system maintains dynamic and static balance. Due to the changes in the external environment temperature, in order to save the operating costs of the system, the flow mode often changes, and the flow through the frequency conversion pump is operated at the value set between 10–100%.

The total supply water flow of the system changes, resulting in the change of each end flow and easy to cause hydraulic imbalance.

Dynamic balancing valve or external set dynamic balancing valve can keep the dynamic hydraulic balance of the system.

More Comfortable

More Energy-saving

More Convenient

Balance is the core of all systems !

The static balancing valve is used to keep hydraulic balance between each branch of backwater.Its measuring channel changes the accuracy of flow measurement.It can assist debugging engineer in the debugging process of system balancing to reduce operation difficulty, improve the accuracy of debugging. Its refined ductile iron valve body and soft seal design ensure the life of static balancing valve and tight shut-off function.

Product Characteristics:

- It is often used in heating and cooling water system to control the hydraulic balance of every branch.
- Independent switch locking structure has clear and accurate opening instructions
- Hydroport is sealed by double "o" ring with self shut-off and antileakage functions
- Easy to debug

Technical Specifications

- body: under DN50: brass ; above DN50: ductile iron
- insert: brass alloy or stainless steel
- sealing ring: EPDM
- pressure: PN16/PN25
- maximum differential pressure: 1.2MPa/2.5MPa
 - (limited by noise)
- working temperature: -10~120°C
- connection type: under DN50:thread above DN50: flange
- suitable medium: water or ethylene glycol mixed liquid

Specification and size:

Application :

Туре	Specification(DN)	D (mm)	L (mm)	H (mm)	Kvs(m³/h)
LS JT15	15	G1/2	83	100	1.8-3.0
LS JT20	20	G3/4	90	100	3.0-6.0
LS JT25	25	G1	110	101	4.6-8.8
LS JT32	32	G1 1/4	124	110	5.6-15
LS JT40	40	G1 1/2	130	120	6.8-30
LS JT50	50	G2	238	234	15-50

Structure principle

Dynamic balancing valve consists of valve housing and stainless steel valve insert. The valve insert is one or more hydraulic automatic regulating devices. The hydraulic automatic regulating device consists of a valve insert with variable flow area, a spring with high precision and supporting parts.

The relationship of pipe system flow and differential pressure:

G=K · A · $\sqrt{\Delta P}$ (G: flow, K: flow coefficient A: area of water flow ΔP : differential pressure) dynamic balancing valve working state changes as follow:

Differential pressure: $0 < \Delta P \le \Delta P_{min}$ (partial load operation) flow increases as the differential pressure increases, the flow can not meet the designed requirement

21kpa Pressure 210kpa 40kpa Difference 400kpa the flow "G" keeps constant. Q=Q_{max} the flow of dynamic balancing valve keeps constant. This range is the working range of dynamic balancing valve

 $\Delta \mathsf{P}_{\min} \leq \Delta \mathsf{P} \leq \Delta \mathsf{P}_{\max}$

working state (3)

 $\label{eq:pmax} \Delta P \ , \ flow \\ increases as the \\ differential pressure \\ increases. It exceeds \\ the working range, \\ so the dynamic \\ balancing valve of \\ larger differential \\ pressure range is \\ needed to replace \\ this small one. \\ \end{cases}$

Insert

working state (1)

Туре	specification (DN)	differential pressure (Kpa)	minimum flow (m³/h)	maximum flow (m³/h)
LS FD15		9-90	0.076	1.152
LS FD20	15/20/25	21-210	0.126	1.818
	13/20/23	40-400	0.169	2.272
LS FD25		88-800	0.248	3.636
LS FD32	32/40	9-90	0.684	3.33
LS FD32		21-210	1.022	5.004
LS FD40	52/40	40-400	1.368	6.66
L31 D40		88-800	2.045	8.64
		9-90	3.168	29.52
LS FD50	50	21-210	3.96	36.324
LOTDU	30	40-400	5.292	50.031
		88-800	7.956	53.123

working state (2)

LS JC series of dynamic flow balancing valve can make the water flow constant in the pine. It can solve the hydraulic imbalance caused by the system pressure fluctuation in its working range. The flow is constant as designed when the valve is open. The operation of each end device will not bother with each other in the controlled loop.

LS JC(DN15-40)

Technical specification

Technical specifications(1)

spring material: stainless steel maximum working temperature: 280°C(DN15–DN40) 118°C(DN50–DN800)

Туре	specification (DN)	differential pressure (Kpa)	minimum flow (m ³ /h)	maximum flow (m³/h)			
LS JC15		9~90	0.076	1.152			
LS JC20	15/20/25	21~210	0.126	1.818			
	13/20/23	40~400	0.169	2.272			
LS JC25		88~800	0.248	3.636			
LS JC25		9~90	0.684	3.33			
LS JC32	25/32/40	21~210	1.022	5.004			
	20/02/40	40~400	1.368	6.66			
LS JC40		88~800	2.045	8.64			
LS JC50		10~130	3.168	29.52			
	50/65/80	22~210	3.96	36.324			
LS JC65		40~390	5.292	50.031			
LS JC80		88~800	7.956	53.123			

Technical	specifications(2):
-----------	--------------------

Туре	specification	differential pressure	maxim	um flow	Туре	specification	differential pressure	maxim	um flow
туре	' (DN)	(Kpa)	m³/h	L/s	туре	· (DN)	(Kpa)	m³/h	L/s
		10-130	27.53	7.57			10-130	258.88	71.91
LS JC		22-210	66.12	18.34	LS JC		22-210	627.11	174.18
100	100	35-210	72.06	20.01	350	350	35-210	684.00	190.00
100		40-390	100.1	27.78	000		40-390	950.02	263.88
		88-880	108.12	30.02			88-880	1010.00	280.56
		10-130	40.82	11.34			10-130	327.02	90.84
LS JC		22-210	99.02	27.51	LS JC		22-210	858.16	229.19
125	125	35-210	108.11	30.01	400	400	35-210	900.01	250.00
120		40-390	150.03	41.68	100		40-390	1250.08	347.22
		88-880	160.12	44.45			88-880	1330.00	369.44
		10-130	54.56	15.14			10-130	422.38	117.33
LS JC		22-210	132.03	36.67	LS JC		22-210	1022.95	284.17
150	150	35-210	144.02	40.01	450	450	35-210	1116.00	310.02
		40-390	200.05	55.56	100		40-390	1550.02	430.55
		88-880	220.13	61.13			88-880	1600.00	444.24
		10-130	95.36	26.49			10-130	504.14	140.04
LS JC		22-210	231.03	64.17	LS JC	500	22-210	1221.00	339.10
200	200	35-210	252.02	70.01	500		35-210	1332.03	370.10
200		40-390	350.02	97.22	000		40-390	1850.00	513.90
			88-880 366.54 101.75		88-880	1930.02	536.12		
		10-130	149.87	41.63			10-130	749.38	208.16
LS JC		22-210	363	100.83	LS JC		22-210	1716.01	476.66
250	250	35-210	396.03	110.00	600	600	35-210	1872.00	520.01
200		40-390	550.06	152.78	000		40-390	2600.00	722.22
		88-880	584.54	163.35			88-880	2822.01	783.33
		10-130	204.37	56.77			10-130	1158.16	321.71
LS JC		22-210	495.03	137.5	LS JC		22-210	3498.01	971.67
300	300	35-210	540.03	150	800	800	35-210	3816.00	1060.00
000		40-390	750.08	208.33	000		40-390	5300.18	1472.22
		88-880	790.07	219.45			88-880	5480.04	1522.41

Size-1:

DN	A(mm)	B(mm)	Thread diameter
15	44	18	G1/2
20	65	27	G3/4
25	65	32	G1
32	105	40	G1 1/4
40	105	46	G1 1/2

Size-2:

DN	A (mm)	B (mm)	C (mm)	D (mm)	weight (kg)
50	86	188	106		3.6
65	86	188	112		4
80	86	188	112		4
100	100	220	167	235	9.6
125	125	220	192	270	11.3
150	150	220	220	300	14
200	200	220	276.35	360	22
250	250	220	338	425	30.6
300	300	223.2	400	485	48.6
350	350	223.2	447.8	555	54.8
400	400	262	510	620	87.3
450	450	242	560	670	118
500	500	242	618	730	150
600	600	262	728	845	280
800	800	262	882	988	488

Dynamic Flow Balancing Valve

Application -1

flow is balancing of each end device

flow is balancing of heat pump

Application -2

flow is balancing of water chilling unit

flow is balancing of cooling tower

LS WS series of external set dynamic flow balancing valve is the combination of the static balancing valve and the dynamic differential pressure balancing valve. It can not only set flow in factory, but also set flow according to the actual flow requirement at installation site. It is especially suitable for each area of heating and air-conditioning system. It has the convenience as the static balancing valve regulates the flow and the accuracy as controlling the flow. It can not only control the maximum flow of the pipeline, but also keep the change relationship of flow and differential pressure suitable for the pipeline characteristics when flow changes.

External set dynamic flow balancing valve "LS WS"

Technical Specification

insert mode: adjustable flow type

body material: ductile iron

insert material: stainless steel or

high resistance synthetic material

pressure: PN25

working temperature: -28~125°C

environment temperature: -12~56°C

shut-off pressure: 720Kpa

connection type: flange coupling

sealing: EPDM

flow error: $\leq 5\%$

Flow characteristic

Working principle

This valve regulates the maximum flow by regulates the valve opening. Every opening corresponds to a flow value. As shown above, when the pipeline with balancing valve is operating under dynamic flow, $0 < \Delta P \leq \Delta P_{min}$ (partial load operation), the relationship of water flow Q and differential pressure ΔP is $\Delta P = \Delta Pmin^*Q^2/Qmax^2$, matching the pipe characteristics. When the pipeline with balancing valve is running under full load, $\Delta P_{min} \leq \Delta P \leq \Delta P_{max}$, the flow Q is constant. $Q = Q_{max}$. Set the

opening according to the flow requirement of the pipeline where the valve is located. If the required flow changes because of the late system rectification, we can regulate the opening of the external set dynamic balancing valve to adapt the required flow after rectification. No need to replace the valve, reduce late investment and related costs.

flow range

(m³/h)

0-38

0-50

0-60

0-80

Flow 100%

Flow 100%

Flow 100%

40-400 0-100

40-400 0-180

40-400 0-350

Radiator

Radiator

Radiator

Balancing Valve

External Set Dynamic Flow

differential

pressure (Kpa)

40-400

40-400

40-400

40-400

40-400

H2

(mm)

69

82

106

108

142

156

168

192

Flow

100%

Flow 100%

Flow

100%

щ,

New Radiator

Radiator

Radiator

Balancing Valve

(max flow regulation)

External Set Dynamic Flow

_ _

weight

(kg)

11.5

14

23

35

52

67

98

155

Size:	Туре	specification (DN)	L (mm)	H1 (mm)
	LS WS 32/40	32-40	196	138
	LS WS50	50	238	150
	LS WS65	65	296	178
	LS WS80	80	342	182
	LS WS100	100	426	206
H2	LS WS125	125	525	230
	LS WS150	150	548	252
	LS WS200	200	620	306

Application:

L

Hydraulic balance before system rectification

Hydraulic balance after system rectification

Comparison of external set dynamic balancing valve and other valve installed at corresponding position

comparison	static balar	ncing valve	static balancing valve	dynamic flow b	alancing valve	external set dynamic		
details	horizontal pipe (static)	end (static)	+differential pressure adjustment valve	horizontal pipe (dynamic)	end (dynamic)	balancing valve		
regulation accuracy	general	general	good	good	good	good		
resistance to interference	general	general	good	good	good	good		
static balancing capacity	yes	yes	yes	yes	yes yes			
dynamic balancing capacity	no	no	yes	yes	yes	yes		
working state	unstable,affected by pressure fluctuation		stable, not affected by pressure fluctuation to a certain extent	stable, not affected by pressure fluctuation to a certain extent		stable,not affected by pressure fluctuation		
maintain designed flow capacity	n)	yes	yes		yes		
min.differential pressure requirement	no		must meet the differential pressure requirement value of the differential pressure regulator	maintain min. diff	erential pressure	maintain min. differential pressure		
installation and debugging	complicated		complicated	simple		simple		
requirements for load variation in air–conditioning area	small load chang heating	e of fan coin and system	fan coin and heating system with large load variation	fan coin and hea generally large	ating system with e load variation	fan coin and heating system with large load variation		

Dynamic balancing electric two-way valve is the combination of electric two-way valve and dynamic balancing valve. It is commonly used in fan coils of air-conditioning system. It can avoid overflow and underflow of fan coils caused by differential pressure variation, compared with the ordinary electric twoway valve not with balancing function. The indoor temperature fluctuation reduces and the comfort increases. The related energy consumption of water system deduces, too.

Dynamic balancing electric two-way valve" LS RJ"

Product characteristic

- pressure independent flow control
- reduce energy consumption of system
- increase the room comfort, reduce temperature fluctuation
- pressure/temperature testing points
- easy to maintain the insert

Size:

SI	pecification	L	H1	end join	t length	weight			
-	pecification (DN)	(mm)	(mm)	external thread	internal thread	(kg)			
	15			20	-				
	20	88	88 122	20	-	0.6			
	25			-	36				
	15						20	-	
	20	100	126	20	-	0.7			
	25			-	36				

Dynamic balancing electric two-way valve" LS DJ"

Insert specification

insert mode: fixed flow mode insert material: stainless steel sealing: EPDM working temperature: -2~100℃ environment temperature: -10~45℃ shut-off pressure: 400Kpa connection type: thread

body: brass pressure: PN25 flow error: $\leq 5\%$

Technical parameter

Туре	specification (DN)	differential pressure range (Kpa)	minimum flow (m ³ /h)	maximum flow (m ³ /h)
		9-90	0.076	1.152
LS DJ15 LS DJ20	15/20/25	21-210	0.126	1.818
LS DJ25	10/20/20	40-400	0.169	2.272
		88-800	0.248	3.636
	32/40	9-90	0.684	3.33
LS DJ32		21-210	1.022	5.004
LS DJ40		40-400	1.368	6.66
		88-800	2.045	8.64
		9-90	3.168	29.52
LS DJ50	50	21-210	3.96	36.324
20 0000	50	40-400	5.292	50.031
		88-800	7.956	53.123

Туре	specification (DN)	differential pressure range (Kpa)	flow range (m ³ /h)
LS RJ15		10-95	0.075-1.135
LS RJ20	15/20/25	22-300	0.125-1.825
LS RJ25		40-390	0.165-2.275

Application:

full load flow balancing

partial load flow balancing

Dynamic balancing electric adjustable valve is special valve that dynamic balancing and electric adjustment is operating at the same time. Its insert consists of adjustable part(input) and hydraulic automatic adjustable part(output). The opening of adjustable part(input) regulated electrically at any time according to actual need. The hydraulic automatic adjustable part(output) can regulate the opening of nsert automatically according to different differential pressure. That is, the size of flow area in the output. It can make the flow through the valve constant at any opening.

Dynamic balancing electric adjustable valve "LS TJ"

Technical parameter

- insert mode: adjustable flow mode
- body material: ductile iron
- insert material: stainless steel or high resistance synthetic material
- pressure: PN25
- working temperature: -28~125°C
- environment temperature: -12~56°C
- shut-off pressure: 720Kpa
- connection type: thread or flange coupling
- sealing: EPDM
- flow error: $\leq 5\%$

section

Actuator technical parameter

- voltage: alternating 22~26V; direct 28~32V
- full running time: 98-180s
- input power: 10VA
- protection level: IP44
- output : 2-10VDC, 4-20mA
- frequency: 50/60Hz
- control input: 2–10VDC, 4–20mA, 3–point floating,
- PWM control; 2–10VDC, 4–20mA, 3–point floating
- life: 200,000 times switching cycle

Size:

Technical parameter

Туре	specification (DN)	L(mm)	H1(mm)	H2 (mm)	weight (kg)	differential pressure range (Kpa)	flow range (m ³ /h)	connection type
LS TJ32	32	195	237	69	12.5	35-300	0-7	thread
LS TJ40	40	195	237	69	12.5	35-300	0-7	thread
LS TJ50	50	216	246	78	14	35-300	0-38	flange
LS TJ65	65	300	276	115	25	35-300	0-50	flange
LS TJ80	80	300	276	115	25	35-300	0-50	flange
LS TJ100	100	418	303	143	48	35-300	0-100	flange
LS TJ125	125	565	353	168	99	35-300	0-180	flange
LS TJ150	150	565	353	168	99	35-300	0-180	flange
LS TJ200	200	686	407	192	166	35-300	0-350	flange

Dynamic balancing electric adjustable valve

Application

flow balancing of air-conditioning processing units

comparison of dynamic balancing electric adjustable valve and other valve installed at corresponding position

	5,				
comparison details	electric adjustable valve	static balancing valve+ electric adjustable valve	differential pressure adjustable valve+ electric adjustable valve	dynamic balancing electric adjustable valve	
adjustable accuracy	general	good	better	better	
static balancing capacity	no	yes	yes	yes	
dynamic balancing capacity	no	yes	yes	yes	
opening adjustment	It is not only controlled by temperature control signal, but also affected by pressure fluctuation	It is not only controlled by temperature control signal, but also affected by pressure fluctuation	mainly controlled by temperature control signal, the influence of pressure fluctuation is small	only controlled by temperature control signal	
resistance to interference	general	general	good	better	
working state	not sure, affected by system pressure fluctuation	not sure, affected by system pressure fluctuation	relatively stable, little affected by system pressure fluctuation	stable, not affected by system pressure fluctuation	
flow characteristic curve	The greater the system pressure fluctuation, the greater the deviation from the ideal characteristic curve, the worse the regulation characteristics	The greater the system pressure fluctuation, the greater the deviation from the ideal characteristic curve, the worse the regulation characteristics	No matter how the pressure fluctuation of the system changes, it is basically consistent with the ideal characteristic curve	No matter how the pressure fluctuation of the system changes, it is consistent with the ideal characteristic curve	
min. Differential pressure requirement	no	no	must larger than certain working differential pressure	must larger than the min.differential pressure	
flow transport	flow changes as the pressure changes	flow changes as the pressure changes	at the same opening, flow is basically constant	at the same opening, flow is constant and unique	
installation and debugging	complicated	complicated	complicated	simple	
application range	suitable for the temperature control of the end equipment of HVAC system with small load fluctuation (such as air conditioning box, fresh air unit, air handling unit)	suitable for the temperature control of the end equipment of HVAC system with small load fluctuation (such as air conditioning box, fresh air unit, air handling unit)	Suitable for temperature control of the end equipment of HVAC system(such as air conditioning box, fresh air unit, air handling unit)	Suitable for temperature control of the end equipment of HVAC system(such as air conditioning box, fresh air unit, air handling unit), It has obvious advantage in variable flow system with large load fluctuation	

In the return of manifold, we can install customized connection nipple of return with dynamic balancing insert to ensure each room meet the designed and usage requirement. It can solve the disturbing influence of other branches caused by flow variation of some branch perfectly.

Dynamic balancing manifold "LS FJ"

product characteristic:

• more comfortable

The flow adjustment of each room does not affect the flow of other branches

• more energy-saving

Each branch adjusts the flow according to the required comfort and distributes according to demand without any waste of heat energy

• more convenient

adjustment, new installation and debugging conveniently

• less configuration

No need for differential pressure valve, dynamic balancing valve,static balancing valve etc of manifold, no effect on the final usage result

insert section

flow parameter of manifold connection:

flow distributor	stainless steel / brass	
branches	2-13 branches	
thread both ends	DN25	
external thread	DN20	
flow of each branch	0.1—0.5m ³ /h	

Technical parameter:

differential pressure range (KPa)	10-100
flow range (m ³ /h)	0.1~0.5

Dynamic balancing radiator valve is the combination of dynamic balancing valve and radiator valve. It consists of dynamic balancing automatic radiator valve and dynamic balancing electric radiator valve. It is mainly used in the return of manifold and radiators in heating system. Compared with the radiator valve not with balancing function, it can avoid overflow and underflow caused by different differential pressure because of different position that the same valve installed or the differential pressure variation of the same valve. The indoor temperature fluctuation reduces and the comfort increases. The energy consumption of system operation reduces, too.

Dynamic balancing radiator valve "LS WK"

Product characteristic:

- pressure independent flow control
- reduce energy consumption of system
- increase room comfort
- easy to maintain the insert

section

Technical specification:

body: brass pressure: PN25 insert material: stainless steel sealing: EPDM shut-off pressure: 400Kpa flow error: $\leq 5\%$ working temperature: $-30\sim100$ °C environment temperature: $-10\sim45$ °C connection type: thread

Technical parameter	
---------------------	--

Туре	specification	differential	flow range		
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(DN)	pressure range (Kpa)	L/s	m³/h	
LS WK15	15	10-95	0.020-0.315	0.075-0.800	
LS WK20	20	22-300	0.035-0.505	0.125-1.825	
LS WK25	25	40-390	0.045-0.635	0.165-2.275	

The appearance of constant flow angle valve is the same as common faucet angle valve. The secret is the internal self-operated dynamic balancing insert. In the working differential pressure range, it can eliminate the pressure fluctuation to keep the flow constant.

Dynamic balancing angle valve "LS JF"

Product characteristics:

The core worth of this constant faucet angle valve that can avoid water-grab is: more comfortable, safer, more water-saving

• More comfortable, ensure efficient debugging Due to the constant flow dynamic balancing angle valve can keep flow constant in a large range of differential pressure or keep differential pressure constant in a large range of flow, variation of hot and cold water flow could be stabilized. When the users adjust the valve opening, the change of water temperature can be immediately achieved. After the valve opening of hot and cold water is fixed, the water temperature nearly does not change any more. It can perfectly solve the water–grab phenomenon and improve the comfort of water system.

Safer, avoid scald

There are often news reports of scalding accidents involving the elderly and children in hospitals, hotels and families. Most of these accidents are caused by the increased flow of hot water and the insufficient supply of cold water in the water supply system that uses centralized heating water. It is known that the installation of this valve at the end of the shower system can limit the maximum flow and ensure the hydraulic balance, which can ensure the safety and effectively prevent the occurrence of scalding accidents

More water-saving, distribution according to demand

Constant flow dynamic balancing angle valve can limit the maximum flow, refuse extra water and achieve the flow distribution according to demand of each faucet end. It can effectively save water. If hot water is saved, it is also energy–saving. The system energy consumption is reduced.

Section

Flow parameter:

Туре	specification(DN)	flow range(m ³ /h)
LS JF15	22~210	0.25~0.8

Application:

Project case

• CHAOHU SHANGHAI CENTURY LIANHUA SUPERMARKET

• SHENGZHOU PAUL INTERCONTINENTAL HOTEL

• FUJIAN PUTIAN CITY COMPREHENSIVE GYMNASIUM

SHANGHAI UNIVERSITY

• SHANDONG QIANFOSHAN HOSPITAL

• SHENGZHOU CITY PEOPLE' HOSPITAL

Project case

• ZHESHANG WEALTH CENTER(HAGZHOU)

• JINAN GINZA DIGITAL PLAZA

BEIJING FINANCIAL INTERNATIONAL HOTEL

• SHENGZHOU SANDING HOTEL

HEFEI HUANGSHAN BUILDING

HEFEI ZHONGHUAN SQUARE

• SHANGHAI THUMB PLAZA

• SHANGHAI XINJINJIANG BUILDING(MULTIMEDIALIFE SQUARE)

• SHANGHAI ZHONGHUAN OASIS SQUARE

• JINAN INTERNATIONAL AIRPORT

• JINGGANGSHAN RAILWAY STATION

NINGBO HOLY HVAC CO.,LTD

Add: 1 Floor, 1 Build, No.485 Zhengtong Road, Kandun Street Cixi,Ningbo,P.R.China Tel: +86 (0) 574 63035806 63286656 Email: hu@cnholy.cn mark@cnholy.cn luby@cnholy.cn Http: //www.cnholy.cn